Introduction to Dataflow Analysis

Kenneth Zadeck

NaturalBridge, Inc.
zadeck@naturalbridge.com

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.
BulletTrain Technology



Roadmap

* |Introduction

 Live Variables — Working Example

» Solving Dataflow Equations Efficiently
« Common Dataflow Problems

* Incremental Analysis

* Other Dataflow Problems

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



This is a Tutorial

* Feel free to ask questions at any time.

* Nothing new is going to be presented.
— 80% of this talk was old news in 1980.
— 95% of this talk was old news in 1985.

* | only had a little bit to do with developing dataflow
analysis.

 All of the material presented except the incremental
dataflow information should be any good compiler
text book.

« There is no paper in the proceedings for this talk.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Scope

* Most of the talk is concerned with bit vector
dataflow analysis. In the literature these
problems are called rapid problems.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.
BulletTrain Technology



Roadmap

* |Introduction

* Live Variables — Working Example

» Solving Dataflow Equations Efficiently
« Common Dataflow Problems

* Incremental Analysis

* Other Dataflow Problems

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Live Variables

At the end of each statement, s, in the
function f, what is the set of variables, v, that
have a use that may be reached without
going through a definition of v.

GCC & GNU Toolchain Developers’ Summit 2006

NaturalBridge, Inc.



Live Variables

At the end of each statement, s, in the
function f, what is the set of variables, v, that
have a use that may be reached without
going through a definition of v.

Dataflow information can be represented at
the start of a statement or the end of a
statement.

GCC & GNU Toolchain Developers’ Summit 2006

NaturalBridge, Inc.



Live Variables

At the end of each statement, s, in the
function f, what is the set of variables, v, that
have a use that may be reached without
going through a definition of v.

Global dataflow analyzes whole functions.

GCC & GNU Toolchain Developers’ Summit 2006

NaturalBridge, Inc.



Live Variables

At the end of each statement, s, in the
function f, what is the set of variables, v, that
have a use that may be reached without
going through a definition of v.

The domain of the problem. Common values
Include the set of variables, the set of
definition sites, or the set of use sites.

GCC & GNU Toolchain Developers’ Summit 2006

NaturalBridge, Inc.



Live Variables

At the end of each statement, s, in the
function f, what is the set of variables, v, that
have a use that may be reached without
going through a definition of v.

The gen set. The points in the program that
cause items to be added to the set.

GCC & GNU Toolchain Developers’ Summit 2006

NaturalBridge, Inc.



Live Variables

At the end of each statement, s, in the
function f, what is the set of variables, v, that
have a use that may be reached without
going through a definition of v.

The kill set. The points in the program that
cause items to be deleted from sets.

GCC & GNU Toolchain Developers’ Summit 2006

NaturalBridge, Inc.



Direction

There are two live variables problems:

* backwards — propagation proceeds against the edges
in the CFG.
— gen is the set of uses.
— Kill is the set of defs and clobbers.
— this is what flow does.

* forwards - propagation proceeds with the edges in
the CFG.
— gen is the set of definitions.
— Kkill is the set of clobbers.
— this is what global.c:make_accurate_live _analysis does.
— in df we call this uninitialized uses.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.
BulletTrain Technology



Direction Il

)

a<— ...

<

<a

GCC & GNU Toolchain Developers' Summit 2006 N‘a‘t’ﬁrﬁa.LBridge

NaturalBridge, Inc.
BulletTrain Technology



Direction Il

GCC & GNU Toolchain Developers' Summit 2006

)

a< ...

<

<—a

NattmralBridge

NaturalBridge, Inc.
BulletTrain Technology



Direction Il

 forward (uninitialized uses)

GCC & GNU Toolchain Developers’ Summit 2006 N‘a‘t"ﬂrl“a-LBr]dge

NaturalBridge, Inc.
BulletTrain Technology



Direction Il

 forward (uninitialized uses)
 forward & backward

GCC & GNU Toolchain Developers’ Summit 2006 N‘a‘f’ﬁrl“a-LBr]dge

NaturalBridge, Inc.
BulletTrain Technology



Dataflow Equations

 Backwards: * Forwards:
out, = ' 'ins in, = ' 'outID
s = succ (h) p = pred (h)

in, = out, — kill,, + gen,, | out, =in, —Kill, + gen,

for every h in the program.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.
BulletTrain Technology



Dataflow Equations

 Backwards:

in,, = out, — kill, + gen,

GCC & GNU Toolchain Developers’ Summit 2006 N‘a‘t’ﬁrl“a-LBr]dge

NaturalBridge, Inc.
BulletTrain Technology



Dataflow Equations

 Backwards:

out, = U ing m

s = succ (h)

Apply the effects of h.

GCC & GNU Toolchain Developers' Summit 2006 N‘a‘t’ﬁrﬁa.LBridge

NaturalBridge, Inc.
BulletTrain Technology



Correctness and Quality

* A solution is correct if it satisfies the system
of equations.

» For cyclic control flow graphs there are many
correct solutions.

 Want to find the minimal solution.

— For live variables this is the correct solution with
the with the fewest 1 bits.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Roadmap

* |Introduction

 Live Variables — Working Example

« Solving Dataflow Equations Efficiently
« Common Dataflow Problems

* Incremental Analysis

* Other Dataflow Problems

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Plan | — Worklist lteration

worklist « all statements
while (worklist = empty)
{
h <« take from worklist
old < in,
out, < empty
for each s in succ,
out, < out, || ing
in, < (out,, && ~kill,)) || gen,
if (in,, = old)
for each p in pred,
add p to worklist

GCC & GNU Toolchain Developers’ Summit 2006

NattmralBridge

NaturalBridge, Inc.
BulletTrain Technology



Plan 1.1 — Flow.c

worklist « all statements Evaluate all of the
while (worklist = empty) statements in a basic
{ block at one time and in

h < take from worklist
old < in,
out, «<— empty
for each s in succ,

out, < out, || ing
in, < (out,, && ~kill,)) || gen,
if (in, = old)

for each p in pred,

add p to worklist

GCC & GNU Toolchain Developers’ Summit 2006

reverse order.

NattmralBridge

NaturalBridge, Inc.
BulletTrain Technology



Plan 2 — Transfer Functions

* |t is not necessary to apply gen and kill
separately for each statement.

- Gen and kill can be computed for an entire
basic block.

 For live variables:

gengy.sp < (9N, - Killgy) || geng,

» The worklist algorithm then uses blocks
rather than statements.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Plan 3 — Elimination Algorithms

» Transfer functions can be built for other
program structures than sequences of
statements:

* Loops and if-then-elses can be similarly
handled.

* for if-then-elses:

genif < gentrue ” genfalse
kill.. « kil && Kill._,..

true

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Plan 3 — Elimination Algorithms

It is possible to parse any reducible program into
sequences, simple loops and if-then-elses.

* Process the transfer functions bottom up, then top
down and you have the solution.

* Multiple entry loops must be processed by iteration.

* For many years this was the method of choice
because it was much faster than the worklist.

* Allen Cocke and Schwartz were the first to propose
this.

« Graham and Wegman was the method of choice.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Plan 4 — Better Worklists

» Hecht demonstrated that better management
of the worklist could yield an algorithm that
was just as fast as elimination algorithms.

— For forward problems, multiple passes in reverse
postorder are made.

— For reverse problems, multiple passes in
postorder are made.

 Works for all functions, even irreducible ones.
- Easy to implement.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Plan 4.1 — Even Better Worklists

« Atkinson and Griswold demonstrated that
doing a little depth first search in the middle
of Hecht’s algorithm generally speeded things
up.

» This is what is used in df.

GCC & GNU Toolchain Developers’ Summit 2006

NaturalBridge, Inc.



Roadmap

* |Introduction

 Live Variables — Working Example

» Solving Dataflow Equations Efficiently
« Common Dataflow Problems

* Incremental Analysis

* Other Dataflow Problems

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Common Dataflow Problems

* There are 5 common fast dataflow problems:
— Live Variables.
— Uninitialized Variables
— Reaching Uses
— Reaching Definitions
— Code Placement

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Common Dataflow Problems

* These problems are common because they
are easy to understand and formulate for text
books and student compilers.

* Real compilers have more hair:
— subregs
— aliasing
— thread synchronization
* You generally can use these problems as

stating points for the solution to your exact
problem.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Live Variables

- Backward.

Each slot is for one variable.

Kill = the set of variables clobbered
+ the set of variables defined at s.

Gen = the set of variables used at s.

Confluence = or (set union).

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Uninitialized Variables

Forward.

Each slot is for one variable.

Kill = the set of variables clobbered at s.
Gen = the set of variables defined at s.
Confluence = or (set union).

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Reaching Uses

- Backward.

One use for each slot in the bit vectors.

Kill = if vis clobbered or defined at s
add all uses of v.

Gen = the set of uses at the statement.

Confluence = or (set union).

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Reaching Defs

Forward.

One def for each slot in the bit vectors.

Kill = if vis clobbered or defined at s
add all defs of v.

Gen = the set of defs at s.

Confluence = or (set union).

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Code Placement

 Originally proposed as bidirectional problem
by Morel and Renvoise.

» Large number of reformulations in the
literature.

* People tend to use Chow’s second
formulation. This is a backward problem
followed by a simple forward cleanup.

« Some variant of Chow’s second formulation is
used in GCC.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Roadmap

* |Introduction

 Live Variables — Working Example

» Solving Dataflow Equations Efficiently
« Common Dataflow Problems

* |ncremental Analysis

* Other Dataflow Problems

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Incremental Dataflow Analysis

* |ncremental dataflow
analysis is hard.:

— Itis easy to get a correct
solution.

— Itis hard to get a minimal
solution.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.
BulletTrain Technology



Incremental Dataflow Analysis

NN

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Incremental Dataflow Analysis

H@

GCC & GNU Toolchain Developers' Summit 2006 N‘a‘t"ﬂT*a.LBridge

NaturalBridge, Inc.



Incremental Dataflow Analysis

\@

GCC & GNU Toolchain Developers' Summit 2006 N‘a‘t"ﬂT*a.LBridge

NaturalBridge, Inc.



Incremental Dataflow Analysis

GCC & GNU Toolchain Developers' Summit 2006 N‘a‘t"ﬂT*a.LBridge

NaturalBridge, Inc.



Incremental Dataflow Analysis

* For live variables, bits get
stuck on in loops after the
deletion of a bit in a gen set.

GCC & GNU Toolchain Developers' Summit 2006 NattmralBridge

NaturalBridge, Inc.



Incremental Dataflow Analysis

* For live variables, bits get
stuck on in loops after the
deletion of a bit in a gen set.

« Thatinis defined in terms of
out and out is defined interms
of in of the preds means that
it is hard to break cycles.

* This is a correct solution, just
not minimal.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Incremental Dataflow Analysis

* For live variables, bits get
stuck on in loops after the
deletion of a bit in a gen set.

« Thatinis defined in terms of
out and out is defined interms
of in of the preds means that
it is hard to break cycles.

* This is a correct solution, just
not minimal.

* This is what flow does and
we do not want to do this.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Incremental Dataflow Algorithms

* You must delete all of the bits that were
associated with the gen that was removed

without deleting bits associated with gens that
are preserved.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Incremental Dataflow Algorithms

* You must delete all of the bits that were
associated with the gen that was removed

without deleting bits associated with gens that
are preserved.

* All algorithms fall into two categories:

— Ryder: find the smallest region that encompasses all
of the possible bits from the deleted gen.

— Zadeck: go after the bits one by one.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Incremental Dataflow Algorithms

* You must delete all of the bits that were
associated with the gen that was removed
without deleting bits associated with gens that
are preserved.

* All algorithms fall into two categories:

— Ryder: find the smallest region that encompasses all
of the possible bits from the deleted gen.

— Zadeck: go after the bits one by one.

* Neither approach yielded a practical algorithm
for compilers.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Incremental Dataflow Algorithms

* You must delete all of the bits that were
associated with the gen that was removed
without deleting bits associated with gens that
are preserved.

* All algorithms fall into two categories:

— Ryder: find the smallest region that encompasses all
of the possible bits from the deleted gen.

— Zadeck: go after the bits one by one.

* Neither approach yielded a practical algorithm
for compilers.

* | have let it go.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Roadmap

* |Introduction

 Live Variables — Working Example

» Solving Dataflow Equations Efficiently
* Common Dataflow Problems

* Incremental Analysis

* Other Dataflow Problems

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



Other Dataflow Problems

There are a lot of dataflow problems that do not
fit into the rapid framework:
— You cannot build efficient transfer functions.
— The slots in the vectors are not independent.
— The values in the slots are not single bits.

» Constant Propagation.
* Alias Analysis.

GCC & GNU Toolchain Developers’ Summit 2006 Nca‘t"ﬂrr-‘a.LBr]dge

NaturalBridge, Inc.



