
Enhancements to Aliasing

Danny Berlin, Esq.
IBM T.J.Watson Research Center

dberlin@dberlin.org

Kenneth Zadeck
NaturalBridge, Inc.

zadeck@naturalbridge.com

GCC & GNU Toolchain Developers' Summit 2005

Roadmap

Analysis
Enhancements

• Call side effect analysis.
• Read-only and non-

addressable variable
detection.

• Pure and const function
detection.

• Type based alias
analysis.

Transformation
Enhancements

• Promotion of static
variables.

• Refinements to call
clobbering.

GCC & GNU Toolchain Developers' Summit 2005

Interprocedural Analysis

• What is new for GCC is that these analysis passes
are applied to an entire compilation unit.

• In the past, the only real way to do compilation unit
wide analysis was in the front end.
– The front ends lied about what was the whole program.

• Changing this required a lot of work.

•Jan Hubicka

•Steven Bosscher

•Dale Johannesen

•Stuart Hastings

The world is now safe for doing interprocedural analysis.

GCC & GNU Toolchain Developers' Summit 2005

Call Side Effect Analysis

• Determine which static variables may be read
or written as a side effect of a call.

• Requires:
– Local summary of static variables read and written

by each function.
– Complete and correct call graph.

GCC & GNU Toolchain Developers' Summit 2005

Call Side Effect Analysis (Technique)

1. Compute local read and write information for the
variables whose scope is contained in the
compilation unit.

2. Collapse cycles in call graph.
– All nodes within a cycle share same information.

3. Assume worst case for functions outside of
compilation unit.

– All statics are read and written.
– Calls may call back into compilation unit.

4. Propagate reads and writes along call graph edges.

GCC & GNU Toolchain Developers' Summit 2005

Call Side Effect Analysis (Problems)

• Must assume that any function that is not
seen can call back into the module being
compiled and thus, get access to the static
variables.

• For a Standard C library you can do better
(except qsort and bsearch).

• GLIBC is not standards conformant.
• Extensions added to printf mean that any

function with some debugging code in it
causes worst case assumptions to be used.

GCC & GNU Toolchain Developers' Summit 2005

Read-only and Non-addressable
Variable Detection.
• Small amount of additional code in the Call

Side Effect Analysis pass.
• This is also done in the front ends.
• We still find more than the front ends do.

– Are these front end bugs?
– Do we want to fix each of the front ends?
– Does it make sense to have the front ends gather

this information?
• This pass is run at -O2 and above for C and

at -O1 and above for other languages.

GCC & GNU Toolchain Developers' Summit 2005

Pure and Const Function Detection

• Replaces the phase done at the RTL level.
• Many positive differences in results:

– Does not get confused by profiling code.
– Handles recursive functions correctly.
– Does not get confused by low level RTL

constructs.
• One (current) regression:

– Misses some cases because constant propagation
and dead code are not run before the detection
step.

GCC & GNU Toolchain Developers' Summit 2005

Type Based Alias Analysis

Simple Idea – If the address is never taken for
any instance of type T, then no instance of
type T can alias anything else.

Complex Problem – What does address is
never taken really mean?

The answer depends on the language, and the
way that one interprets the languages
specification.

This analysis is one of the sanity tests for the
structure reorganization.

GCC & GNU Toolchain Developers' Summit 2005

What Does address is never taken Mean?

structs.h:
struct A {int aa;};
struct B {float bb};

Module A:
#include “structs.h”
struct A a1 = get_a();
struct B b1 = get_b();

Can a1 interfere with b1?

GCC & GNU Toolchain Developers' Summit 2005

What Does address is never taken Mean?

structs.h:
struct A {int aa;};
struct B {float bb};

Module A:
#include “structs.h”
struct A a1 = get_a();
struct B b1 = get_b();

Can a1 interfere with b1?

Module B:
#include “structs.h”
union X {

struct A a;
struct B b;

};
static union X x = xalloc …
struct A get_a() {

return x->a;
}
struct B get_b() {

return x->b;
}

GCC & GNU Toolchain Developers' Summit 2005

What Does address is never taken Mean?

struct C {
int d;

} c1;
struct B {

struct C c;
} b1;
struct A {

struct B b;
} a1;

What can be done with x in x = &a1.b.c?
• Any fields in c may be accessed.
• Offsets can be added to x to access any

field in a or b.

• However, if no bad operations are done
to x, none of the types A, B or C need
escape.

GCC & GNU Toolchain Developers' Summit 2005

What Does address is never taken Mean?

• Taking the address of something does not
cause the type to escape.
– Using the pointer to access sub-fields is fine.

• Using the pointer in a bad way causes the
type, and many connected types, to escape.
– Doing math with the pointer.
– Upcasting with the pointer.
– Passing it to an external function.

GCC & GNU Toolchain Developers' Summit 2005

Type Based Analysis Algorithm,
Part I – Scan the Code
• Record the type of all structure address of

operations.
• Build a table of all of the types seen in the

compilation unit.
• Mark the types as escaping if:

– a pointer to that type appears as a parameter or
return type of a public function.

– the type is a public variable.
– the type appears in a bad cast or pointer

arithmetic operation.

GCC & GNU Toolchain Developers' Summit 2005

Type Based Analysis Algorithm,
Part II – Transitive Closure
• Flow insensitive analysis.
• The closure is performed over the type

system.
• If a type X escapes:

– X’s subtypes escape.
– X’s supertypes escape.
– the types of X’s contained fields escape.
– the types W containing X if there was a pointer

operation of the form &…W.X…

GCC & GNU Toolchain Developers' Summit 2005

Type Based Analysis Algorithm

• In practice, there are three limiting factors:
– The algorithm is flow insensitive.
– The types that escape across module boundaries.
– Poor representation of aliases at the tree level.

• Malloc an free are special cased to keep these
from killing everything.
– Abstracted version of these functions still cause

problems.
• In whole program mode this is algorithm is

very effective since taking the address of
fields of a structure is rare.

GCC & GNU Toolchain Developers' Summit 2005

Type Based Analysis Algorithm

• Originally motivated for structure
reorganization.

• Not meant as a replacement for points to
analysis.
– Type analysis has severe limitations since it does

not track instances.

GCC & GNU Toolchain Developers' Summit 2005

Transformation Enhancements:
Promotion or Static Variables, Part I
• Static scalar variables and structures are

promoted if their types can be “scalarized” by
the SRA pass.

• Arrays and constant variables are not
promoted.

• The side effect analysis code provides
information about which variables must go
back into memory when crossing call sites.

• Promotion occurs before SSA form is built.

GCC & GNU Toolchain Developers' Summit 2005

Transformation Enhancements:
Promotion or Static Variables, Part II
• Loads are inserted:

– at the top of the function.
– after calls that may modify the variable.

• Stores are inserted (if the value is modified)
– at returns.
– before calls that may read or modify the variable.

• A special enhancement to dead code
elimination removes these variables where
they are not live.

GCC & GNU Toolchain Developers' Summit 2005

Transformation Enhancements:
Refinements to Call Clobbering.
• Reduce the number of variables listed as

being call clobbered.
• Call site specific (must redo the caching).
• The side effect analysis code provides

information about which static variables may
be modified by a specific call.

GCC & GNU Toolchain Developers' Summit 2005

Spec 2000 Integer Percentage
Improvements

-3

-2

-1

0

1

2

3

4

5

gzip vpr mcf crafty parser perlbmk gap bzip2 twolf Average

Base
Tree AA
RTL AA
Both

GCC & GNU Toolchain Developers' Summit 2005

Spec 2000 Floating Point Percentage
Improvements

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

wupwise swim mgrid applu mesa art equake facerec ammp lucas fma3d sixtrack apsi Average

Base
Tree AA
RTL AA
Both

GCC & GNU Toolchain Developers' Summit 2005

Conclusions

• This is the first round of interprocedural
analysis phases to be added to GCC.

• Most of these only provide modest
improvement when compiling a single module.

• Occasionally some trigger big changes.
• Many times, the improvement is lost because

the analysis overwhelms downstream
transformations.

GCC & GNU Toolchain Developers' Summit 2005

	Enhancements to Aliasing
	Roadmap
	Interprocedural Analysis
	Call Side Effect Analysis
	Call Side Effect Analysis (Technique)
	Call Side Effect Analysis (Problems)
	Read-only and Non-addressable Variable Detection.
	Pure and Const Function Detection
	Type Based Alias Analysis
	What Does address is never taken Mean?
	What Does address is never taken Mean?
	What Does address is never taken Mean?
	What Does address is never taken Mean?
	Type Based Analysis Algorithm, Part I – Scan the Code
	Type Based Analysis Algorithm, Part II – Transitive Closure
	Type Based Analysis Algorithm
	Type Based Analysis Algorithm
	Transformation Enhancements:Promotion or Static Variables, Part I
	Transformation Enhancements:Promotion or Static Variables, Part II
	Transformation Enhancements:Refinements to Call Clobbering.
	Spec 2000 Integer Percentage Improvements
	Spec 2000 Floating Point Percentage Improvements
	Conclusions

