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NaturalBridge

• NaturalBridge is a software development and consulting 
company.

• We built a Java VM with a static compiler.
– 100% SSA based static compiler.

• NaturalBridge has been retained by Apple to aid in the SSA 
development of GCC.
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My Role

• Assess the SSA algorithms in GCC.
– Choice of algorithm
– Quality of implementation
– Integration issues

• Implement changes to improve performance of the compiler 
and the generated code.

• Assist people with SSA or other algorithm issues.
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History of Static Single Assignment SSA

• Really invented by Shapiro & Saint in 1975.
• Developed at IBM Watson Lab 1984-1990.
• Principal developers:

-Bowen Alpern

-Jeanne Ferrante

-Mark Wegman

-Ron Cytron

-Barry Rosen

-Kenneth Zadeck
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What is Static Single Assignment Form
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What is Static Single Assignment Form?

if (a < b)

a ← a + 1

b ← y
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What is Static Single Assignment Form?

• A systematic splitting of the live range of a variable to 
remove spurious dependencies.

if (a1 < b4)

a2 ← a1 + 1

b5 ← y3

a3 <- Ф(a1, a2)

if (a < b)

a ← a + 1

b ← y
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What is Static Single Assignment Form?

• Each assignment is to a unique 
variable.
– This allows information to be associated 

with the value rather than the variable.
– Assignments can move to places where 

many values are simultaneously live. 

• Each use is reached from exactly one 
assignment.

• Ф-functions are inserted where 
values are joined.

if (a1 < b4)

a2 ← a1 + 1

b5 ← y3

a3 ← Ф(a1, a2)
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What is Static Single Assignment Form?

• An inexpensive way to get better information out of flow 
insensitive analysis algorithms.

• A way of representing finer grained variable specific 
information.

• A way of decreasing the size of def-use chains.
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Computing Static Single Assignment Form
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Computing SSA Form

1. Compute the Dominance Frontier (DF) from the Control 
Flow Graph (CFG).

2. Insert Ф-functions.
3. Rename variables.
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Dominance Frontier (DF)
1

2 3
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• Compute Dominator Relation, Dom, 
for each node, n, in CFG. 4 5 6 7

Dom(1) = {2,3,4,5,6,7,8,9,10}

Dom(3) = {6,7,9}



GCC & GNU Toolchain Developers' Summit 2004

Dominance Frontier (DF)
1

2 3

10

98

• Compute Dominator Relation, Dom, 
for each node, n, in CFG. 

• DF(n) contains the set of nodes 
that are immediately reachable in the 
CFG from Dom(n) but not in 
Dom(n).

4 5 6 7

Dom(1) = {2,3,4,5,6,7,8,9,10}

DF(1) = {}

Dom(3) = {6,7,9}

DF(3) = {10}

Dom(7) = {}

DF(7) ={9}
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Dominance Frontier (DF)
1

2 3

10

98

• Compute Dominator Relation, Dom, 
for each node, n, in CFG. 

• DF(n) contains the set of nodes 
that are immediately reachable in the 
CFG from Dom(n) but not in 
Dom(n).

• Iterated Dominance Frontier, 
IDF(n), is the transitive closure of 
DF(n).

4 5 6 7

Dom(1) = {2,3,4,5,6,7,8,9,10}

DF(1) = {}, IDF(1) = {}

Dom(3) = {6,7,9}

DF(3) = {10}, IDF(3) = {10}

Dom(7) = {}

DF(7) ={9}, IDF(7) = {9, 10}
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Insert Ф-functions
• Ф-functions for v are inserted at the union of DF(v), for all 

of the assignments to v.

for each variable v in program:
set phiLocs ← {}
for each definition d of variable v:

phiLocs ← phiLocs ∪ (IDF(BB(d)) ∩ Live(v))
end
insert Ф-functions for v at top of all phiLocs

end
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Renaming Variables

• Each assignment to v is converted to an assignment to unique 
name vi.

• Use depth first traversal of Dom.
• Keep stack of last seen name for v.
• Rename each uses with name on top of stack.
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Incremental Static Single Assignment Form
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Incremental SSA Form

• Delete an assignment to v - easy
• Add an assignment to v - moderately easy 

Do not model move as delete and insert.

• Delete an edge - easy
• Add an edge - hard
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Delete an Assignment to vdel

find the name vdom of the variable v that is live before 
the assignment to vdel

for each use u of vdel

replace use u with vdom
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Add an Assignment to vnew

find the name vdom of the variable v that is live before 
the assignment to vnew

let phiLoc ← (DF(vnew) – DF(vdom)) ∩ Live(vdom)
for each node n in phiLoc

if n contains a Ф-function that uses vdom

then replace replace vdom with vnew

else add Ф-function to n
run renaming algorithm starting at BB(vdom) over 

Dom(BB(vdom)) ∩ Live(vdom)
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Move an Assignment

• A definition of variable can be moved to any location that 
dominates all of its uses.

• This is much faster than delete & insert.
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Delete an Edge e

remove the edge e into basic block b
for each Ф-function in b

delete the parameter that corresponds to e
end
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Add an Edge e

• This is hard.
• In the NaturalBridge compiler we never add edges.
• We can grow single entry-multiple exit regions:

– Procedure integration
– Loop unrolling

• Use loop-closed SSA form. 
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Loop Closed SSA Form

• SSA form but with extra Ф-functions added at loop exits.
– A special copy is added to each exit for each variable modified 

within the loop.
– Loop exits become join nodes as the loop is replicated by 

unrolling.
– The special copies are later turned into 
Ф-functions as exit edges are added into their blocks. 

– These extra Ф-functions gather these values together. 
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Loop Closed SSA Form

• The NaturalBridge version differs because we add special 
copy statements before SSA form is built.
– Current unrolling code needs to be fixed since it gets out of ssa 

form and back in to build loop closed SSA form.

• We also add them in other places than loops:
– Loop Exits for loop unrolling
– Exception Handlers for procedure inlining
– After conditionals explained later
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Tree-SSA-Dom

• This phase does three things:
– Constant propagation
– Value numbering
– Branch forwarding
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Problems With Tree-SSA-Dom

• Utility optimizations should be separate passes because they 
are run frequently.
– You generally do not need the combined power or want to pay the 

cost.
– Constant prop should be run frequently. 
– Branch forwarding should be run only twice.

• Constant propagation and value numbering needs to be a 
global iterative algorithms, not a single pass over the 
dominator tree.
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Problems With Tree-SSA-Dom

• Branch forwarding uses a poor algorithm.
– This talk outlines a new algorithm. 

• Constant Propagation in Tree-SSA-CCP needs some 
upgrading.
– This talk outlines these problems.

• Value Numbering in Tree-SSA-Pre uses a poor algorithm.
– This is about to be fixed by Danny Berlin.
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Branch Forwarding

• Currently done in 
Tree-SSA-Dom.

– gets out and back into SSA form.

• Should only be run twice at 
most.
– before loop switching 
– near end of optimization

pp

p
becomes
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Getting Out then Back Into SSA

• Problems:
– Expensive.
– May not be correct.
– End up with a lot of extra copy statements.
– Loose all information attached to SSA variables.

• Ranges, value numbers, aliasing information.

• Alternative:
– Get in touch with me, zadeck@naturalbridge.com.
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Branch Forwarding

1. Use value numbers from Tree-SSA-Pre to find fully 
redundant predicates.

2. Determine profitability.
3. Assess CFG structure.
4. Process Ф-functions and replicated code.
5. Cleanup. 
This will be done by Jeff Law.
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Branch Forwarding 
Find Fully Redundant Predicates

• Run Tree-SSA-Pre to produce value numbers for all 
expressions.

• Visit the statements in dominator tree order.
• Keep a dictionary of predicates seen so far.
• When the predicate, p2, at the bottom of the basic block, b, 

being visited matches a predicate, p1, in the dictionary, do 
steps in next 2 slides to see if this branch can be eliminated.
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Branch Forwarding 
Determine Profitability

• Walk backward from p2 counting the 
instructions and Ф-functions. 

• If you reach a branch node, abort. 
• Stop counting when you reach a join node.
• The forwarding operation will replicate all of 

the code from the join node to the predicate 
(b5). 
– If there is too much code here, do not do the forwarding.

b2

b4

p1

p2

b1

b3

b5

b6 b7
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Branch Forwarding 
Assess CFG Structure

• p1 has two successors b1 and b2.
• The join node before p2 has predecessors of 

b3 and b4.
• It is safe to do the forwarding iff:

– b1 dominates b3 and 
– b2 dominates b4
– This domination test is safe no matter 

how complex the path is from b1 ⇒ b3 
or b2 ⇒ b4.

p1

p2

b1 b2

b3 b4
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Branch Forwarding 
Process Ф-functions and Replicated Code
• Code in b5 will be copied to b6 and b7.

– Use SSA add assignment operation.
– Ф-functions turn into simple copy statements.
– Regular code is replicated.

i3 ← Ф(i1, i2)
k4 ← i3 + 1
if (p2)

b5

b6 b7

i3 ← Ф(i1, i2)
k4 ← i3 + 1
if (p2)

b5

b6 b7
i4 ← i1
k5 ← i4 + 1

i5 ← i2
k6 ← i5 + 1

becomes
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Branch Forwarding
Cleanup
• Delete the code in b5.  

– There are no uses for any of the variables.

• Forward the edges around b5.
– b3 -> b6
– b4 -> b7

• Delete the edges associated with b5.

p1

p2

b1 b2

b3 b4

b5

b7b6
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Problems with Tree-SSA-CCP

• Performance Issues:
– Poor implementation of CFG in-edges
– Locality control
– Fast traversal of lattice

• Coverage Issues:
– Richer lattice
– Better information at conditionals
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Tree-SSA-CCP Performance Issues
Poor Implementation of CFG In-Edges

• In-edges should be a vector not a linked list.
• Basic blocks for exception handlers may have hundreds of 

in-edges.
• Needs to mimic Ф-function in-edges.
• Savings:

– space - no space saved for cfg itself but 
Ф-function does not need pointer to cfg edge

– time - edges can be deleted in constant time
– locality - vectors are compact 

• To be done by Ben Elliston.
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Tree-SSA-CCP Performance Issues
Locality Control

• The processing of the worklist should be ordered by depth-
first number of dom tree.

• This will control the bouncing around in large functions.

• This may be done after measurement on large functions.
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Tree-SSA-CCP Performance Issues
Fast Traversal of Lattice

• Most values are not constants:
– especially true for subsequent executions

• In worst case, each operand is examined height of lattice 
–1 times.

• Execution should favor ⊥ operations first.
– this will drag dependant operations to ⊥ skipping intermediate 

levels of the lattice.
• Already implemented by Danny Berlin.
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Tree-SSA-CCP Coverage Issues 
Richer Lattice

• Lattice models operation at Ф-function.
• CCP works as long as the lattice is bounded.
• Merges cannot raise value in lattice.
• Lattice will have 5 rather than 3 levels.
• Useful values to add:

– constants: -2, -1, 0, 1, 2
– halfRanges: [-2, ┬], [┬, 5]
– ranges: [-2..2], [5..10]
– antiRanges: ~[-2..2], ~[-5..10]
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Current CCP Lattice

• Top

• Constants

• Bottom

┬

SN … -3 -2 -1  0  1  2  3 … LN

┴
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Enhanced CCP Lattice

• Top

• Constants

• Half Ranges

• Ranges and 
AntiRanges

• Bottom

┬

SN … -3 -2 -1  0  1  2  3 … LN

[SN..┬] [-1..┬] [0..┬][1..┬][LN.. ┬]

[┬..SN] [┬..-1] [┬..0] [┬..1] [┬..LN]

[SN..-1] [SN..0] [SN..1] [-1..0] [-1..1] 
[-1..LN] [0..1] [0..LN][1..LN]

~[SN..-1] ~[SN..0] ~[SN..1] ~[-1..0] ~[-1..1] 
~[-1..LN] ~[0..1] ~[0..LN]~[1..LN]

┴
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Tree-SSA-CCP Coverage Issues
Better Information at Conditionals
• Conditionals provide information about 

values.
• If y4 is proven to be constant, we know 

something about x1 on the true side of the 
branch.

if (x1 < y4)

← f(x1)
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Tree-SSA-CCP Coverage Issues
Better Information at Conditionals
• Conditionals provide information about 

values.
• If y4 is proven to be constant, we know 

something about x1 on the true side of the 
branch.

• Insert new live ranges for variables 
mentioned in test.

• New variables are placeholders for ranges 
and other information.

• Same trick as loop closed SSA.
• Info lost when getting out of SSA.

if (x1 < y4)

x2 ← lt(x1,y4)

y5 ← ge(y4,x1)

← f(x2)

x3 ← gt(x1,y4)

y6 ← le(y4,x1)

x3 ← Ф(x2, x3) 
y3 ← Ф(y5, y6)



GCC & GNU Toolchain Developers' Summit 2004

Tree-SSA-CCP Coverage Issues
Better Information at Conditionals

• Doing this allows redundant 
conditionals to be deleted.
– null checks (~[0..0])
– array bounds checks
– mudflaps
– user level checks

• This will be done by Diego Novilla

If (p != null)

then {

…

if (p != null)

}



GCC & GNU Toolchain Developers' Summit 2004

Range Propagation

• Discovering range information is very different from constant 
propagation:

Constant Propagation:

•Optimistic

•Well defined fixed point

•Algorithmic

Range Analysis:

•Pessimistic

•Truncated Iteration

•Heuristic
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Range Propagation

• Range analysis is currently done in
Tree-SSA-Loop-nIter.

• This phase needs to be upgraded:
– Should start with the output of Tree-SSA-CCP.
– Ranges needed for other things than loop bounds. 
– Need to update the heuristics.

• This phase is generally one of the targets of the 
performance analysis crowd.  

• Diego Novillo is planning to attack this soon.
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Status

• Finished examination of all Tree SSA code.
• Finished examination of all Loop SSA code.
• Identified the small easy changes.
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Next Steps

• Attack the aliasing implementation.
– This is a place where the other developers have been sloppy.
– Many passes ignore statements with non-trivial aliasing.
– Aliasing is hard to understand.

• Upgrade the loop optimizations.
– Some are translations from older RTL algorithms.

• Help anyone with SSA algorithm problems.
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