
GCC & GNU Toolchain Developers' Summit 2004

Static Single Assignment Form

Kenneth Zadeck

NaturalBridge, Inc.
zadeck@naturalbridge.com



GCC & GNU Toolchain Developers' Summit 2004

NaturalBridge

• NaturalBridge is a software development and consulting 
company.

• We built a Java VM with a static compiler.
– 100% SSA based static compiler.

• NaturalBridge has been retained by Apple to aid in the SSA 
development of GCC.



GCC & GNU Toolchain Developers' Summit 2004

My Role

• Assess the SSA algorithms in GCC.
– Choice of algorithm
– Quality of implementation
– Integration issues

• Implement changes to improve performance of the compiler 
and the generated code.

• Assist people with SSA or other algorithm issues.



GCC & GNU Toolchain Developers' Summit 2004

History of Static Single Assignment SSA

• Really invented by Shapiro & Saint in 1975.
• Developed at IBM Watson Lab 1984-1990.
• Principal developers:

-Bowen Alpern

-Jeanne Ferrante

-Mark Wegman

-Ron Cytron

-Barry Rosen

-Kenneth Zadeck



GCC & GNU Toolchain Developers' Summit 2004

What is Static Single Assignment Form



GCC & GNU Toolchain Developers' Summit 2004

What is Static Single Assignment Form?

if (a < b)

a ← a + 1

b ← y



GCC & GNU Toolchain Developers' Summit 2004

What is Static Single Assignment Form?

• A systematic splitting of the live range of a variable to 
remove spurious dependencies.

if (a1 < b4)

a2 ← a1 + 1

b5 ← y3

a3 <- Ф(a1, a2)

if (a < b)

a ← a + 1

b ← y



GCC & GNU Toolchain Developers' Summit 2004

What is Static Single Assignment Form?

• Each assignment is to a unique 
variable.
– This allows information to be associated 

with the value rather than the variable.
– Assignments can move to places where 

many values are simultaneously live. 

• Each use is reached from exactly one 
assignment.

• Ф-functions are inserted where 
values are joined.

if (a1 < b4)

a2 ← a1 + 1

b5 ← y3

a3 ← Ф(a1, a2)



GCC & GNU Toolchain Developers' Summit 2004

What is Static Single Assignment Form?

• An inexpensive way to get better information out of flow 
insensitive analysis algorithms.

• A way of representing finer grained variable specific 
information.

• A way of decreasing the size of def-use chains.



GCC & GNU Toolchain Developers' Summit 2004

Computing Static Single Assignment Form



GCC & GNU Toolchain Developers' Summit 2004

Computing SSA Form

1. Compute the Dominance Frontier (DF) from the Control 
Flow Graph (CFG).

2. Insert Ф-functions.
3. Rename variables.



GCC & GNU Toolchain Developers' Summit 2004

Dominance Frontier (DF)
1

2 3

10

98

• Compute Dominator Relation, Dom, 
for each node, n, in CFG. 4 5 6 7

Dom(1) = {2,3,4,5,6,7,8,9,10}

Dom(3) = {6,7,9}



GCC & GNU Toolchain Developers' Summit 2004

Dominance Frontier (DF)
1

2 3

10

98

• Compute Dominator Relation, Dom, 
for each node, n, in CFG. 

• DF(n) contains the set of nodes 
that are immediately reachable in the 
CFG from Dom(n) but not in 
Dom(n).

4 5 6 7

Dom(1) = {2,3,4,5,6,7,8,9,10}

DF(1) = {}

Dom(3) = {6,7,9}

DF(3) = {10}

Dom(7) = {}

DF(7) ={9}



GCC & GNU Toolchain Developers' Summit 2004

Dominance Frontier (DF)
1

2 3

10

98

• Compute Dominator Relation, Dom, 
for each node, n, in CFG. 

• DF(n) contains the set of nodes 
that are immediately reachable in the 
CFG from Dom(n) but not in 
Dom(n).

• Iterated Dominance Frontier, 
IDF(n), is the transitive closure of 
DF(n).

4 5 6 7

Dom(1) = {2,3,4,5,6,7,8,9,10}

DF(1) = {}, IDF(1) = {}

Dom(3) = {6,7,9}

DF(3) = {10}, IDF(3) = {10}

Dom(7) = {}

DF(7) ={9}, IDF(7) = {9, 10}



GCC & GNU Toolchain Developers' Summit 2004

Insert Ф-functions
• Ф-functions for v are inserted at the union of DF(v), for all 

of the assignments to v.

for each variable v in program:
set phiLocs ← {}
for each definition d of variable v:

phiLocs ← phiLocs ∪ (IDF(BB(d)) ∩ Live(v))
end
insert Ф-functions for v at top of all phiLocs

end



GCC & GNU Toolchain Developers' Summit 2004

Renaming Variables

• Each assignment to v is converted to an assignment to unique 
name vi.

• Use depth first traversal of Dom.
• Keep stack of last seen name for v.
• Rename each uses with name on top of stack.



GCC & GNU Toolchain Developers' Summit 2004

Incremental Static Single Assignment Form



GCC & GNU Toolchain Developers' Summit 2004

Incremental SSA Form

• Delete an assignment to v - easy
• Add an assignment to v - moderately easy 

Do not model move as delete and insert.

• Delete an edge - easy
• Add an edge - hard



GCC & GNU Toolchain Developers' Summit 2004

Delete an Assignment to vdel

find the name vdom of the variable v that is live before 
the assignment to vdel

for each use u of vdel

replace use u with vdom



GCC & GNU Toolchain Developers' Summit 2004

Add an Assignment to vnew

find the name vdom of the variable v that is live before 
the assignment to vnew

let phiLoc ← (DF(vnew) – DF(vdom)) ∩ Live(vdom)
for each node n in phiLoc

if n contains a Ф-function that uses vdom

then replace replace vdom with vnew

else add Ф-function to n
run renaming algorithm starting at BB(vdom) over 

Dom(BB(vdom)) ∩ Live(vdom)



GCC & GNU Toolchain Developers' Summit 2004

Move an Assignment

• A definition of variable can be moved to any location that 
dominates all of its uses.

• This is much faster than delete & insert.



GCC & GNU Toolchain Developers' Summit 2004

Delete an Edge e

remove the edge e into basic block b
for each Ф-function in b

delete the parameter that corresponds to e
end



GCC & GNU Toolchain Developers' Summit 2004

Add an Edge e

• This is hard.
• In the NaturalBridge compiler we never add edges.
• We can grow single entry-multiple exit regions:

– Procedure integration
– Loop unrolling

• Use loop-closed SSA form. 



GCC & GNU Toolchain Developers' Summit 2004

Loop Closed SSA Form

• SSA form but with extra Ф-functions added at loop exits.
– A special copy is added to each exit for each variable modified 

within the loop.
– Loop exits become join nodes as the loop is replicated by 

unrolling.
– The special copies are later turned into 
Ф-functions as exit edges are added into their blocks. 

– These extra Ф-functions gather these values together. 



GCC & GNU Toolchain Developers' Summit 2004

Loop Closed SSA Form

• The NaturalBridge version differs because we add special 
copy statements before SSA form is built.
– Current unrolling code needs to be fixed since it gets out of ssa 

form and back in to build loop closed SSA form.

• We also add them in other places than loops:
– Loop Exits for loop unrolling
– Exception Handlers for procedure inlining
– After conditionals explained later



A
ssessm

ent



GCC & GNU Toolchain Developers' Summit 2004

Tree-SSA-Dom

• This phase does three things:
– Constant propagation
– Value numbering
– Branch forwarding



GCC & GNU Toolchain Developers' Summit 2004

Problems With Tree-SSA-Dom

• Utility optimizations should be separate passes because they 
are run frequently.
– You generally do not need the combined power or want to pay the 

cost.
– Constant prop should be run frequently. 
– Branch forwarding should be run only twice.

• Constant propagation and value numbering needs to be a 
global iterative algorithms, not a single pass over the 
dominator tree.



GCC & GNU Toolchain Developers' Summit 2004

Problems With Tree-SSA-Dom

• Branch forwarding uses a poor algorithm.
– This talk outlines a new algorithm. 

• Constant Propagation in Tree-SSA-CCP needs some 
upgrading.
– This talk outlines these problems.

• Value Numbering in Tree-SSA-Pre uses a poor algorithm.
– This is about to be fixed by Danny Berlin.



GCC & GNU Toolchain Developers' Summit 2004

Branch Forwarding

• Currently done in 
Tree-SSA-Dom.

– gets out and back into SSA form.

• Should only be run twice at 
most.
– before loop switching 
– near end of optimization

pp

p
becomes



GCC & GNU Toolchain Developers' Summit 2004

Getting Out then Back Into SSA

• Problems:
– Expensive.
– May not be correct.
– End up with a lot of extra copy statements.
– Loose all information attached to SSA variables.

• Ranges, value numbers, aliasing information.

• Alternative:
– Get in touch with me, zadeck@naturalbridge.com.



GCC & GNU Toolchain Developers' Summit 2004

Branch Forwarding

1. Use value numbers from Tree-SSA-Pre to find fully 
redundant predicates.

2. Determine profitability.
3. Assess CFG structure.
4. Process Ф-functions and replicated code.
5. Cleanup. 
This will be done by Jeff Law.



GCC & GNU Toolchain Developers' Summit 2004

Branch Forwarding 
Find Fully Redundant Predicates

• Run Tree-SSA-Pre to produce value numbers for all 
expressions.

• Visit the statements in dominator tree order.
• Keep a dictionary of predicates seen so far.
• When the predicate, p2, at the bottom of the basic block, b, 

being visited matches a predicate, p1, in the dictionary, do 
steps in next 2 slides to see if this branch can be eliminated.



GCC & GNU Toolchain Developers' Summit 2004

Branch Forwarding 
Determine Profitability

• Walk backward from p2 counting the 
instructions and Ф-functions. 

• If you reach a branch node, abort. 
• Stop counting when you reach a join node.
• The forwarding operation will replicate all of 

the code from the join node to the predicate 
(b5). 
– If there is too much code here, do not do the forwarding.

b2

b4

p1

p2

b1

b3

b5

b6 b7



GCC & GNU Toolchain Developers' Summit 2004

Branch Forwarding 
Assess CFG Structure

• p1 has two successors b1 and b2.
• The join node before p2 has predecessors of 

b3 and b4.
• It is safe to do the forwarding iff:

– b1 dominates b3 and 
– b2 dominates b4
– This domination test is safe no matter 

how complex the path is from b1 ⇒ b3 
or b2 ⇒ b4.

p1

p2

b1 b2

b3 b4



GCC & GNU Toolchain Developers' Summit 2004

Branch Forwarding 
Process Ф-functions and Replicated Code
• Code in b5 will be copied to b6 and b7.

– Use SSA add assignment operation.
– Ф-functions turn into simple copy statements.
– Regular code is replicated.

i3 ← Ф(i1, i2)
k4 ← i3 + 1
if (p2)

b5

b6 b7

i3 ← Ф(i1, i2)
k4 ← i3 + 1
if (p2)

b5

b6 b7
i4 ← i1
k5 ← i4 + 1

i5 ← i2
k6 ← i5 + 1

becomes



GCC & GNU Toolchain Developers' Summit 2004

Branch Forwarding
Cleanup
• Delete the code in b5.  

– There are no uses for any of the variables.

• Forward the edges around b5.
– b3 -> b6
– b4 -> b7

• Delete the edges associated with b5.

p1

p2

b1 b2

b3 b4

b5

b7b6



GCC & GNU Toolchain Developers' Summit 2004

Problems with Tree-SSA-CCP

• Performance Issues:
– Poor implementation of CFG in-edges
– Locality control
– Fast traversal of lattice

• Coverage Issues:
– Richer lattice
– Better information at conditionals



GCC & GNU Toolchain Developers' Summit 2004

Tree-SSA-CCP Performance Issues
Poor Implementation of CFG In-Edges

• In-edges should be a vector not a linked list.
• Basic blocks for exception handlers may have hundreds of 

in-edges.
• Needs to mimic Ф-function in-edges.
• Savings:

– space - no space saved for cfg itself but 
Ф-function does not need pointer to cfg edge

– time - edges can be deleted in constant time
– locality - vectors are compact 

• To be done by Ben Elliston.



GCC & GNU Toolchain Developers' Summit 2004

Tree-SSA-CCP Performance Issues
Locality Control

• The processing of the worklist should be ordered by depth-
first number of dom tree.

• This will control the bouncing around in large functions.

• This may be done after measurement on large functions.



GCC & GNU Toolchain Developers' Summit 2004

Tree-SSA-CCP Performance Issues
Fast Traversal of Lattice

• Most values are not constants:
– especially true for subsequent executions

• In worst case, each operand is examined height of lattice 
–1 times.

• Execution should favor ⊥ operations first.
– this will drag dependant operations to ⊥ skipping intermediate 

levels of the lattice.
• Already implemented by Danny Berlin.



GCC & GNU Toolchain Developers' Summit 2004

Tree-SSA-CCP Coverage Issues 
Richer Lattice

• Lattice models operation at Ф-function.
• CCP works as long as the lattice is bounded.
• Merges cannot raise value in lattice.
• Lattice will have 5 rather than 3 levels.
• Useful values to add:

– constants: -2, -1, 0, 1, 2
– halfRanges: [-2, ┬], [┬, 5]
– ranges: [-2..2], [5..10]
– antiRanges: ~[-2..2], ~[-5..10]



GCC & GNU Toolchain Developers' Summit 2004

Current CCP Lattice

• Top

• Constants

• Bottom

┬

SN … -3 -2 -1  0  1  2  3 … LN

┴



GCC & GNU Toolchain Developers' Summit 2004

Enhanced CCP Lattice

• Top

• Constants

• Half Ranges

• Ranges and 
AntiRanges

• Bottom

┬

SN … -3 -2 -1  0  1  2  3 … LN

[SN..┬] [-1..┬] [0..┬][1..┬][LN.. ┬]

[┬..SN] [┬..-1] [┬..0] [┬..1] [┬..LN]

[SN..-1] [SN..0] [SN..1] [-1..0] [-1..1] 
[-1..LN] [0..1] [0..LN][1..LN]

~[SN..-1] ~[SN..0] ~[SN..1] ~[-1..0] ~[-1..1] 
~[-1..LN] ~[0..1] ~[0..LN]~[1..LN]

┴



GCC & GNU Toolchain Developers' Summit 2004

Tree-SSA-CCP Coverage Issues
Better Information at Conditionals
• Conditionals provide information about 

values.
• If y4 is proven to be constant, we know 

something about x1 on the true side of the 
branch.

if (x1 < y4)

← f(x1)



GCC & GNU Toolchain Developers' Summit 2004

Tree-SSA-CCP Coverage Issues
Better Information at Conditionals
• Conditionals provide information about 

values.
• If y4 is proven to be constant, we know 

something about x1 on the true side of the 
branch.

• Insert new live ranges for variables 
mentioned in test.

• New variables are placeholders for ranges 
and other information.

• Same trick as loop closed SSA.
• Info lost when getting out of SSA.

if (x1 < y4)

x2 ← lt(x1,y4)

y5 ← ge(y4,x1)

← f(x2)

x3 ← gt(x1,y4)

y6 ← le(y4,x1)

x3 ← Ф(x2, x3) 
y3 ← Ф(y5, y6)



GCC & GNU Toolchain Developers' Summit 2004

Tree-SSA-CCP Coverage Issues
Better Information at Conditionals

• Doing this allows redundant 
conditionals to be deleted.
– null checks (~[0..0])
– array bounds checks
– mudflaps
– user level checks

• This will be done by Diego Novilla

If (p != null)

then {

…

if (p != null)

}



GCC & GNU Toolchain Developers' Summit 2004

Range Propagation

• Discovering range information is very different from constant 
propagation:

Constant Propagation:

•Optimistic

•Well defined fixed point

•Algorithmic

Range Analysis:

•Pessimistic

•Truncated Iteration

•Heuristic



GCC & GNU Toolchain Developers' Summit 2004

Range Propagation

• Range analysis is currently done in
Tree-SSA-Loop-nIter.

• This phase needs to be upgraded:
– Should start with the output of Tree-SSA-CCP.
– Ranges needed for other things than loop bounds. 
– Need to update the heuristics.

• This phase is generally one of the targets of the 
performance analysis crowd.  

• Diego Novillo is planning to attack this soon.



GCC & GNU Toolchain Developers' Summit 2004

Status

• Finished examination of all Tree SSA code.
• Finished examination of all Loop SSA code.
• Identified the small easy changes.



GCC & GNU Toolchain Developers' Summit 2004

Next Steps

• Attack the aliasing implementation.
– This is a place where the other developers have been sloppy.
– Many passes ignore statements with non-trivial aliasing.
– Aliasing is hard to understand.

• Upgrade the loop optimizations.
– Some are translations from older RTL algorithms.

• Help anyone with SSA algorithm problems.


	Static Single Assignment FormKenneth ZadeckNaturalBridge, Inc.zadeck@naturalbridge.com
	NaturalBridge
	My Role
	History of Static Single Assignment SSA
	What is Static Single Assignment Form
	What is Static Single Assignment Form?
	What is Static Single Assignment Form?
	What is Static Single Assignment Form?
	What is Static Single Assignment Form?
	Computing Static Single Assignment Form
	Computing SSA Form
	Dominance Frontier (DF)
	Dominance Frontier (DF)
	Dominance Frontier (DF)
	Insert Ф-functions
	Renaming Variables
	Incremental Static Single Assignment Form
	Incremental SSA Form
	Delete an Assignment to vdel
	Add an Assignment to vnew
	Move an Assignment
	Delete an Edge e
	Add an Edge e
	Loop Closed SSA Form
	Loop Closed SSA Form
	Assessment
	Tree-SSA-Dom
	Problems With Tree-SSA-Dom
	Problems With Tree-SSA-Dom
	Branch Forwarding
	Getting Out then Back Into SSA
	Branch Forwarding
	Branch Forwarding Find Fully Redundant Predicates
	Branch Forwarding Determine Profitability
	Branch Forwarding Assess CFG Structure
	Branch Forwarding Process Ф-functions and Replicated Code
	Branch ForwardingCleanup
	Problems with Tree-SSA-CCP
	Tree-SSA-CCP Performance IssuesPoor Implementation of CFG In-Edges
	Tree-SSA-CCP Performance IssuesLocality Control
	Tree-SSA-CCP Performance IssuesFast Traversal of Lattice
	Tree-SSA-CCP Coverage Issues Richer Lattice
	Current CCP Lattice
	Enhanced CCP Lattice
	Tree-SSA-CCP Coverage IssuesBetter Information at Conditionals
	Tree-SSA-CCP Coverage IssuesBetter Information at Conditionals
	Tree-SSA-CCP Coverage IssuesBetter Information at Conditionals
	Range Propagation
	Range Propagation
	Status
	Next Steps

